
^

WEBIGAMI BASIC
For Coders

Welcome to the Webigami BASIC, the Webigami platform's programming
language. The lnguage is used in formulas, scripts, integrations and everywhere
programming is needed. In fact, it is the only programming language you need to
learn. Everything else is con!gurable point-and-click.

Knowing the language is an important skill since the most advanced Webigami
applications require Webigami BASIC. In short, the skill is important since
Webigami teams need skilled Webigami programmers.

To become a skilled Webigami programmer you'll need to learn how to move data
between variables, cells, sheet storage and external systems. This document
discusses that. More speci!cally, it discusses calculations, triggers, cells, variables,
and API elements. These !ve fundamentals de!ne the language. We start with the
rules concerning "calculations."

Note to the reader: Although Webigami BASIC is basic, it is also very specialized.
And it's advanced. Give yourself a number of hours to read and re-read this
document. That will get you o" and running. The language features hundreds of
functions so do not expect to learn them in a day. However, references with
examples are available. And the language is easy to learn. Good luck.

Calculations

Program snippets in the Webigami world are known as calculations. These
programming snippets can be placed in cells and can also be run separately to
perform special programming tasks. Each cell's settings section has an option
called Cell Calculations. There are also calculation options in the Page Settings
area. You can place calculations in either of these two areas.

Calculations can be written two ways: as formulas and as scripts. Formulas are
expressions like AB + BC. They are simple and can be easily added to a cell by
clicking its settings icon and selecting Cell Calculations.

Formulas can also be written long hand: as scripts. As an example, the formula AB
+ BC can be written as the following script:

MyVar = AB + BC
RETURN MyVar /RETURN

Whereas formulas can always be written as scripts, many scripts cannot be written
as formulas. Scripts support loops, conditionals, and can be hundreds of lines
long. A hypothetical script that calculates a tax based on the rate stored in cell DF
and a menu option stored in cell DE appears below.

IF DE = "Taxable" THEN
 X = AB * (1 + DF)
ELSE
 X = AB
/IF
RETURN X /RETURN

The option to write a calculation as a formula is available only when you're writing
to the current cell. Everywhere else you use scripts.

In summary, calculations can be placed in cells and in your Page Settings area.
They sometimes can be written as formulas and always as scripts. How
calculations are triggered and used is the topic of the next section.

Triggers

The word "trigger" means "under what circumstances a calculation runs."
Webigami sheets support a wide variety of triggers. Calculations that run when a
sheet is recalculated are called "spreadsheet-like." They are extremely usefull,
hence the popularity of commercial spreadsheet programs.

Despite their power, spreadsheet-like calculations are insu#cient for building
advanced applications. You'll want to run calculations in response to cells being
edited by end-users, when Action buttons are clicked, and when users !rst enter a
sheet. Triggers provide you that ability. The triggers below are available.

Trigger Run calculation when...
Spreadsheet Runs when sheet is recalculated.
OnEdit After a cell is edited.

OnAppEntry When an application is !rst loaded.
OnDesignEntry After a sheet's data is !rst loaded.
OnClick When a Go button or Action button is clicked
OnActionBefore When a built-in Action button is clicked
OnActionAfter After a built-in Action button completes its tasks.

The !rst two items above relate to speci!c cells. These scripts run when the sheet
is recalculated or when the cell is edited, but not both.

The bottom set are sheet-related. Set them up in the Extensions - Calculations
area. Place the functions you de!ne in the OnAppEntry calculation.

In summary, calculations can be placed in cells and in sheets. The calculations in
cells run when the sheet is recalculated or when the cell is edited. Calculations in
sheets are used for running scripts when pages are loaded, saved and when
buttons are selected. In the next section we look at the nature of cells.

Webigami Cells

Webigami sheets contain di"erent kinds of cells. A cell can be simple or complex.
It can be spreadsheet-like or triggered. It can be a header cell or a table cell. We
discuss the di"erent kinds of cells below. We also discuss how these cells !t into
the world of applications, where sets of sheets are combined together to manage
multiple work routines.

Simple and Complex Cells
Cells are either simple or complex. Simple cells store a single value. Complex cells
store a table of values. Examples of simple cells include number and text boxes.
Examples of complex cells include File Attachments, Agendas, and Scribbles (cells
that store drawings and signatures).

Complex cells require you know how the table of values is structured. You can !nd
a cells structure with the INFO function. Specify the cell you want to learn about to
understand how to read and write its values. For example:

INFO("AB")

Header and Table Cells
Cells can appear inside and outside the cell tables on a sheet. The cells sitting
outside cell tables are called "header" cells. They're stand-alone. Each has its own
two-character cell code for use in formulas and scripts. Cells inside cell tables are
called "table" cells. Table cells are organized into columns. Each cell in a column
has the same two-character cell code, the same (repeated) script, and each cell in
the column uses the same kind of cell component (for example, the same text box
or the same menu selection).

You refer to an entire column's data wth the cell code by itself. You refer to the
value of speci!c cell in a column with the cell code and its row number. See the
two examples below.

X=FA Place all values from column FA into X
X=FA[2] Place the value from column FA, row 2 into X

Spreadsheet-like Vs. Triggered Cells
Cell calculations can be spreadsheet-like or triggered but not both. Spreadsheet-
like calculations write to themselves and cannot write to other cells. They run
when the sheet is being recalculated. The value they return becomes the value of
the cell. Spreadsheet-like scripts use RETURN statements to return their calculated
results and end execution.

Triggered calculations work the opposite of spreadsheet-like calculations. They
can write to other cells but they cannot write to themselves. They do not return
any data so they do not use RETURN statements. Instead, triggered scripts end
when they encounter an EXIT or the end of the script is reached.

Other than these noted di"erences, spreadsheet-like and triggered calculations
run in the same way. Both use the same Webigami BASIC language.

Reading and Writing to Sheets in an Application
In the Webigami world, applications are sets of designs. Together, they form an
application. As an application, the calculations are allowed to read and write to
other sheets in the same application. They cannot read or write to sheets in other
applications.

Also, as a user moves between sheets in an application, the cells changed on one
sheet are automatically available to the next. In other words, they're "global" to
the application. These cells are referenced by their cell codes and design IDs. For
example: AB!1000. (The design ID in this example is 1000).

As mentioned above, cell codes are global. To be more speci!c, they're global
variables. Global variables are discussed in greater detail in the next section.

Loading And Saving Sheets
Loading and saving data in sheets is typically left up to the Webigami
environment. The user enters a sheet and data is loaded from permanent
storage. The user clicks Save and data is saved back to permanent storage.

However, when building multi-sheet applications, you often want to take
control of the loading and saving of data. You want to set up "Non-storage"
sheets that load and save data to and from other sheets. In these cases you
load and store data with scripts. For information on this topic see the
documents on application development.

To summarize this section, we !nd that cells can be header and table cells. They
can hold a single value and they can be complex. They can be spreadsheet-like
and run when the sheet is recalculated, or they can be triggered when a user edits
the cell. Also, scripts can read and write to other cells. And when the sheet is part
of an application, the cells across all the sheets become available to the scripts in
the sheets.

In the next section we look at a larger topic: the topic of variables. You'll !nd cells
are just a kind of variable.

Variables

In this section we list !ve rules governing variables in Webigami BASIC. We learn
more about the syntax of the language, naming and formatting conventions, and
the di"erence between local and global variables.

RULE #1

Variables in Webigami BASIC are two-dimensional. In other words, variables are
tables of values. Even when you write X=1 you're creating a table-- it just happens
to have one column and one row with the value "1" in it.

You address Webigami variables as follows:

To address the entire table of values specify the variable name.
For example: MyVar

To address column i, row j of a table follow the name with the column and
row in brackets.
For example: MyVar[2,3] or MyVar[i,j]
Note: Spaces are not allowed between the name and the left square bracket.

To address the i'th row of column 1 follow the name with the row number in
brackets.
For example: MyVar[2] or MyVar[i].
Note: MyVar[1,2] is the same as myVar[2].

Use the same conventions above when addressing Webigami cells. For example,
AB[2] and AB!123.1000[2] indicate the cell in the second row of column AB on the
current design and in the design 123.1000, respectively.

Global Variables
Webigami variables can be local and global. Local variables are available
(persistent) during execution of the script and then dropped. Global variables
keep their information as long as you stay in the application, within the designs
that make up the application. You decide whether a variable is local or global by
the name you give it. See below.

Local Variables Global Variables

Explanation Use standard variable name. Standard name plus a "!" or a
"!" and a design ID.

Example X X!

Example X[1,2] X![1,2]

Example AB AB!1000

Example AB[4] AB!1000[4]

Note: The value of an unde!ned value (its default) is ERROR (with one row and one
column). The default value of a value other than the one in column one, row one is
the empty string. Webigami BASIC does not have the concept of a NULL value. To
clear a variable you set it to ERROR.

RULE #2

Variables are auto-datatyped. In other words, you do not need to declare whether
a value is a date or a number and how many columns and rows you want. You just
start using them.

Values can be text, numbers, currencies, dates and times, and logicals. Make sure
to write them properly. Numbers cannot contain commas and special characters.
Dates and times must be written as MM/DD/YYYY, or HH:MM, or MM/DD/YYYY
HH:MM where M means month, D means day, Y means year, H means hour and M
means minute (respectively). Logicals return the value TRUE or FALSE. for
example, IF A="TRUE" then ... /IF.

RULE #3

Variable names can be upper or lower case. In other words, the variable ABC and
the variable Abc are the same. Also variable names cannot begin with a number
and cannot contain special characters like stars and quoting characters.

RULE #4

To specify a literal value place quotes around it (quotes around numbers are
optional). Webigami BASIC supports three types of quoting characters: single
quotes, double quotes, and carets. When quoting a value you must begin and end
with the same quoting character. The values in quotes may contain the other
kinds of quoting characters but not the one used. The examples below
demonstrate the use of di"erent quoting characters.

MyMsg1 = ^He asked, "Was that Jessy's !rst time?"^
MyMsg2 = "Your password is: 3a^%_1234"
MyMsg3 = 'Do not use quotes (") in your password.'

RULE #5

The four basic arithmetic operators are +, -, *, and /. These do addition,
subtraction, multiplication and division respectively. For example:

X = (AB * MyFactor - 3)/C

The "test" operators used in statements like "IF A > B THEN ... /IF" are as follows:

= Equals.
!= Not equals.
= Equals
== Equals (Case-sensitive)
< Less than.
<= Less than or equals.
> Greater than.
>= Greater than or equals.
~ Text begins with.
~~ Text contains.

The text-concatenation operator is the & character. It's used to paste text
together. Technically speaking, you can also use a + character, but if the values
being pasted together are numbers the language will add the number instead of
pasting them. It's best to use the & character when pasting text together and the +
character when adding numbers.

Example Result

X="ABC"
Y=100
RETURN X&Y /RETURN

ABC100

Note: Additional testing operations are available as API Functions.

RULE #6

Line-item cells run their scripts across all their lines. In other words, the same
script runs repeatedly, once for every line. Use the functions ThisRow, ThisCC,
IsSummary(CC), and Summary(CC) to get the current row number, the current cell
code, whether the cell has a summary row, and the value in the summary row,
respectively. See examples below.

Line Item Calculation Examples

X = AB[thisRow] + AC[thisRow]
RETURN X /RETURN

Y = AB[thisRow] + Summary("AC")
RETURN Y /RETURN

Y = AB[thisRow] + Summary(ThisCC)
RETURN Y /RETURN

Z = LastRow
RETURN Z /RETURN

IF ISSUMMARY(ThisCC)="TRUE" THEN
 RETURN SUMMARY(ThisCC) /RETURN
ELSE
 RETURN "" /RETURN
/IF

In summary, Webigami BASIC variables are two-dimensional, auto-datatyped,
case-insensitive, and can be local and global. To make a variable global you add a
"!" to the end of it (Example: myVar!). To address a speci!c column and row you
can specify just the row (Example: MyVar[2]) which assumes column 1, or you can
specify both the column and the row (Example: MyVar[1,2]).

API Elements (Functions and Statements)

Webigami BASIC includes hundreds of functions. To access them use the link
provided wherever script boxes appear. Your language reference has the six
categories below.

System Functions - These functions provide information about your
environment: the login ID of the user, the last design they visited, whether they're
a guest or sta", the current date, and so on.

Loops and Conditionals - FOR loops, IF statements, and functions that tell you
whether a logical condition is TRUE or FALSE.

Dates, Numbers and Text - A wide variety of functions that manipulate dates,
numbers and text.

Data Storage and Search - Functions that retrieve, store and search data stored
on Webigami sheets.

2D Array Manipulation - A wide variety of functions for manipulating variables
with multiple rows and/or columns.

Specialty Cell APIs - Functions that update, read and write to complex cells like
File Attachments, Agendas, and Scribbles.

See your on-line reference to view the functions available.

Next Steps

Webigami BASIC provides a complete programming environment for turning
Webigami sheets into full-featured applications. Automating the most complex
work routines is about designing the sheets you need, setting them up, and
adding code to them.

As a next step, dig in. Pick a programming tutorial on an application of interest to
you. Then follow it. If you get stuck, reference other tutorials, the on-line
programming reference, videos or leave Webigami a message.

This document was written by Dave. Have ideas on how to improve this article?
Share them with us. We're always trying to improve.

https://webigami.com/pkC.iNm6j

